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Reverse Mathematics

Given a theorem, what axioms are necessary to prove the theorem?

Most mathematical activity:

Axioms Theorems
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Second-Order Arithmetic

We work in second order arithmetic.

Two types of variables:

Number variables x , y , z ,w ranging over elements of N
Set variables X ,Y ,Z ,W ranging over subsets of N

From this, can encode:

Real numbers

Functions f : N→ N
Borel sets

Graphs, other combinatorial objects
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Reverse Mathematics: Important Subsystems

ACA0 →WKL0 → RCA0

RCA0: Recursive Comprehension Axiom.

Comprehension for ∆0
0 (computable) sets plus Σ0

1-induction.

Mild assumptions, used as base theory

WKL0: Weak König’s Lemma. Every infinite binary tree has an
infinite path.

Over RCA0, equivalent to:

Heine-Borel Theorem

Continuous functions on a closed interval are integrable

Every locally k-colorable graph is k-colorable
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Reverse Mathematics: Important Subsystems

ACA0: Arithmetical Comprehension Axiom

Over RCA0, equivalent to:

Every countable vector space has a basis

Ramsey’s theorem for sets of size ≥ 3

Existence of a range of arbitrary f : N→ N
Existence of Halting set relative to A:

A′ = {e : ΦA
e (e)↓}
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Reverse Mathematics: Important Subsystems

ACA0: Arithmetical Comprehension Axiom

Over RCA0, equivalent to:

Every countable vector space has a basis

ACA0 Countable VS has basis

ACA0

Countable VS has basis

+RCA0
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Sequential Problems

Problem: Every finite graph without odd cycles is bipartite.

Sequential Problem: For every infinite sequence of finite graphs
without odd cycles, there exists an infinite sequence of bipartitions.

Pigeonhole Principle: Given k ≥ 2 and f : A→ k , with |A| <∞,

there is y such that |{x ∈ A : f (x) = y}| ≥ |A|
k

.

Sequential Pigeonhole Principle: Given k ≥ 2 and a sequence
〈An, fn〉n∈N , fn : An → k and |An| <∞, there is a sequence
〈yn〉n∈N such that

∀n
(
|{x ∈ An : fn(x) = yn}| ≥

|An|
k

)
.
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Sequential Problems

Question: Which sequential problems are equivalent to ACA0,
WKL0, or RCA0 over RCA0?

Proposition

The following are equivalent over RCA0:

(i) ACA0

(ii) Given a sequence 〈Xn〉n∈N of finite sets, there is a sequence of
upper bounds 〈bn〉n∈N such that ∀n ∀x (x ∈ Xn → x ≤ bn).

Proof: Can compute range of f : N→ N
Xn = {0, s + 1} if f (s) = n; Xn = {0} otherwise.
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Motivating Example: Graph Colorings

Let C be a universal class of graphs (closed under isomorphisms and
finite subgraphs) such that every finite graph in C is r -colorable.

Sequential Problem: For every sequence of finite graphs 〈Gn〉n∈N,
Gn = (Vn,En) ∈ C, there exists a sequence of proper r -colorings
〈χn〉n∈N, χn : Vn → r .

Strength of this problem?

Theorem (Gasarch and Hirst)

WKL0 ↔ Every locally r -colorable graph is r -colorable.
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View graph coloring as a game

Alice plays vertex vi , chooses connections with v0, . . . , vi−1.

If resulting graph not in C, Alice loses.

Bob plays color ci .

If resulting coloring is improper, Bob loses.

Alice v0 v1 v2 · · ·
Bob c0 c1 c2 · · ·

Definition

The class C of graphs is on-line r -colorable if Bob has a winning
strategy in this game.
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The Class of Forests is NOT On-line 2-Colorable
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Sequential Problems

A problem is a triple (A,B,R) where A and B are trees and
R ⊆ A⊗ B.

P(A,B,R) is the statement

∀X (α(X )→ ∃Y β(X ,Y ))

where:

α(X ) holds if X is a finite set of the form
{(0, s0, a0), . . . , (k − 1, sk−1, ak−1)} where s0 < · · · < sk−1
and 〈a0, . . . , ak−1〉 ∈ A, and

β(X ,Y ) holds if Y is a finite set of the form
{(0, t0, b0), . . . , (k − 1, tk−1, bk−1)} where t0 < · · · < tk−1
and 〈a0, . . . , ak−1〉 R 〈b0, . . . , bk−1〉 holds.
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Sequential Problems

P(A,B,R) is the statement

∀X (α(X )→ ∃Y β(X ,Y ))

SeqP(A,B,R) is the statement

∀X (∀nα(Xn) → ∃Y ∀n β(Xn,Yn))

Here X = 〈Xn〉n∈N, Y = 〈Yn〉n∈N.
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View problems as games

ā = 〈a0, . . . , ak−1〉 ∈ A Questions by Alice

b̄ = 〈b0, . . . , bk−1〉 ∈ B Responses by Bob

Game G(A,B,R) is played as follows: Alice and Bob alternate:

Alice a0 a1 a2 · · ·
Bob b0 b1 b2 · · ·

Alice can stop the game at any time.

Bob is required to respond to every one of Alice’s plays.

If k rounds, Bob wins if either 〈a0, . . . , ak−1〉 /∈ A or
〈a0, . . . , ak−1〉 R 〈b0, . . . , bk−1〉 holds; otherwise Alice wins.
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View problems as games

Game G(A,B,R) is played as follows: Alice and Bob alternate:

Alice a0 a1 a2 · · ·
Bob b0 b1 b2 · · ·

(A,B,R) is solvable if for every ā ∈ A there is a b̄ ∈ B such that
ā R b̄ holds.

(A,B,R) is on-line solvable if Bob has a winning strategy in
G(A,B,R).

(A,B,R) is on-line k-solvable if Bob has a winning strategy in the
restricted game Gk(A,B,R) where Alice is required to stop after
the kth round (or earlier).
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On-Line Algorithms

On-Line Algorithms have been useful in studying:

Graph colorings

Matching/Marriage problems

Task scheduling problems

Paging/server problems

Competitive auctions

Useful whenever we must make a sequence of choices for a series
of inputs immediately as they arrive, with no future knowledge.
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On-line Task Scheduling

Process tasks of time (1, 1, 1, 3, 3, 3, 6) on 3 processors.

Optimal Solution: On-Line Solution:

3
1
1 3
1 3 6

6
3 3 3
1 1 1

Competitive ratio = 10/6 ≈ 1.667.

Graham’s on-line algorithm: Move to the processor with lightest
load. Competitive ratio 2− 1

k

Albers: Best competitive ratio for an online algorithm is in
(1.852, 1.923]
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Bounded problems

(A,B,R) is semi-bounded if Bob’s valid responses are bounded by
a function of Alice’s previous plays. More precisely, there is a
function f such that if 〈a0, . . . , ak−1〉 R 〈b0, . . . , bk−1〉 holds, then

b0 < 2f 〈a0〉, b1 < 2f 〈a0, a1〉, . . . , bk−1 < 2f 〈a0, a1, ..., ak−1〉

(A,B,R) is bounded if, in addition to being semi-bounded, there is
a function g such that Alice is required to play ai < 2g(i) for all i .

Proposition (RCA0)

Let k ≥ 1 and let (A,B,R) be a bounded problem. Then
Gk(A,B,R) is determined.
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Separating RCA0 from WKL0

Proposition (RCA0)

Let (A,B,R) be a problem which is on-line solvable. Then
SeqP(A,B,R) holds.

Proof: Use Bob’s winning strategy as a uniformly computable
procedure.

Theorem (H.) (RCA0)

Let k < ω, and let (A,B,R) be a bounded problem which is not
on-line k-solvable. Then SeqPk(A,B,R) implies WKL0.
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Diagonal Nonrecursion

DNR: There is a Diagonally Non-Recursive function; For every
oracle A, there is g : N→ N such that ∀e (g(e) 6= ΦA

e (e)) .

DNR(r): There is such a g with range {0, . . . , r − 1}.

Theorem

For any r ≥ 2,

DNR(r) ↔ WKL0 → WWKL0 → DNR→ RCA0.
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The principle Predictk(r)

For every oracle A there is a sequence 〈∆A
0 , . . . ,∆

A
k−1〉 of partial

Σ0,A
1 -functions

∆A
i : Ui+1 → r

whose domains are a nested sequence of Σ0,A
1 -sets

U0 = N ⊇ U1 ⊇ . . . ⊇ Uk

such that if 〈f0, . . . fk−1〉 is any sequence of partial Σ0,A
1 -functions

fi : Ui → r

then there is an x ∈ Uk such that (∀i < k) fi (x) = ∆A
i (x).

FALSE in the real world. Note that Predict1(r)↔ ¬DNR(r).
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The principle Predictk(r)

Theorem (Schmerl, RCA0)

For r ≥ 2, 1 ≤ k < ω, we have Predictk(r)↔ ¬WKL0.

¬WKL0 implies the existence of an infinite non-2-colorable
forest with finite components.

(essentially a sequence of finite forests without a
corresponding sequence of 2-colorings).

Theorem (Dorais, Hirst, Shafer)

RCA0 + BΣ0
2 + ∃rDNR(r) 0 WKL0.

Conjecture

RCA0 + BΣ0
2 + ∃k(¬Predictk(2)) 0 ∃rDNR(r).
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Separating RCA0 from WKL0

Let Mk(A,B,R) be one more than the largest possible play from
either Alice or Bob in the game Gk(A,B,R).
It exists whenever (A,B,R) is bounded.

Theorem (H.) (RCA0)

Let k ∈ N. Let (A,B,R) be a bounded problem which is not
on-line k-solvable. Let M = Mk(A,B,R). If Predictk(M + 1)
holds, then SeqPk(A,B,R) fails.
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Proof in the case of r -coloring a forest

Theorem (Schmerl) (RCA0)

Let Col(F , r) be the problem of r -coloring a finite forest. Let
k ∈ N be such that Col(F , r) is not on-line k-solvable. If
Predictk(r + 1) holds, then SeqColk(F , r) fails.

Proof.

Construct the graph Gn = (Vn,En): Put 0 ∈ Vn.

If ∆A
i (n) converges in exactly s steps, then put s + 1 ∈ Vn, and

call it vi+1.

By assumption, ∆A
0 (n), . . . ,∆A

i (n) are defined.
If they list a valid r -coloring of v0, . . . , vi , then connect vi+1

according to Alice’s winning strategy.
If they do not list a valid r -coloring, then do not connect vi+1 to
any other vertices.
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Proof.

Suppose 〈χn〉n∈N is a valid sequence of r -colorings of 〈Gn〉n∈N.
Define 〈fi 〉i<k by fi (n) = χn(vi ) if vi exists; fi (n) ↑ otherwise.

By Predictk(r + 1), there is some n with ∆A
i (n) = fi (n) = χn(vi )

for all i < k . So χn is a valid coloring for all i < k, which Bob can
use as a winning play contradicting that Alice has a winning
strategy.
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Separating WKL0 from ACA0

Definition

A problem (A,B,R) has a solvable closed kernel if Bob has a
winning play such that every initial segment of that play is also
winning.

(Technically, the closed kernel R ′ is a modification of the relation
R).

Example: If a graph coloring problem is solvable, its closed kernel
is solvable.

Example: The task scheduling problem we saw was solvable, but
its closed kernel was not.

.
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Separating WKL0 from ACA0

Example: The Pigeonhole Principle does not have a solvable closed
kernel. Consider:

(0, 1, 1, 2, 2, 0, 0, 0)

Example: Given a sequence in 3<∞, find a value that appears over
1% of the time.

(0, 1, . . . , 1, 2, . . . , 2, 0, . . . , 0)

(10 x) (100 x) (1000 x)

The closed kernel is not solvable. 0 and 2 are both solutions, but
both fail at different initial segments.
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Proposition (ACA0)

Let (A,B,R) be a solvable problem. Then SeqP(A,B,R) holds.

Theorem (H., WKL0)

Let (A,B,R) be a semi-bounded problem. If the closed kernel
(A,B,R ′) is solvable, then SeqP(A,B,R) holds.

Proof: Dovetail the sequence of requests 〈n, s, a〉 to get a tree.
Solvable closed kernels will ensure that the tree is infinite.

(The tree has height at least 〈n, 0, 0〉: if n′ < n, then part of the
request Xn′ will be enumerated by that node, and at least one
partial solution will extend to a full solution.)

An infinite branch of the tree will encode a sequence of solutions.
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Separating WKL0 from ACA0

Theorem (Dorais, H., RCA0)

(1) Let k < ω. If (A,B,R) has a closed kernel that is not
k-solvable and SeqPk(A,B,R) holds, then ACA0 holds.

(2) If IΣ0
2 holds, then (1) holds for nonstandard k ∈ N.

Uses concept called “Good-For-Uniform k-Tuple”

Generalizes Schmerl’s “Good Tuple.”
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Thank you! - The Reverse Math Zoo
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Appendix: Good Tuples

Our proof is based on Schmerl’s concept of ”Good Tuples.”

Let n ≥ 2. The n-tuple 〈X0,X1, . . . ,Xn−1〉 is good if
X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn−1, each Xi is enumerable, and whenever
Y1,Y2, . . . ,Yn−2 are disjoint enumerable sets such that
Yi ⊆ Xi , 1 ≤ i ≤ n, and
Xi−1 \ (Y1 ∪ · · · ∪ Yi ) is enumerable, 1 ≤ i ≤ n, then
Xn−1 \ (Y1 ∪ · · ·Yn) 6= ∅.

DO NOT EXIST in models of ACA0.
(Take Y1 = X1, Y2 = · · · = Yn−2 = ∅)
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Appendix: Good Tuples

Lemma (Schmerl)

Let (N ,N) be a model, n < ω. Then N ` ACA0 holds if and only
if N ` there are no uniformly good n-tuples.

Lemma (H., RCA0)

(1) Let n < ω. Then ACA0 holds if and only if there are no
uniformly good n-tuples.

(2) If IΣ0
2 holds, then (1) holds for nonstandard n ∈ N.
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Appendix: Good Tuples

Theorem (Dorais, H., RCA0)

Let k ∈ N, and let (A,B,R) be a problem. If the closed kernel
(A,B,R ′) is not k-solvable and there is a good k-tuple, then
SeqPk(A,B,R) fails.

Proof.

Let 〈a0, . . . , ak−1〉 be a request from Alice such that for any
winning response 〈b0, . . . , bk−1〉 (meaning that ā R b̄), there exists
j < k such that 〈a0, . . . , aj−1〉 R 〈b0, . . . , bj−1〉 fails.
Let 〈X0, . . . ,Xk−1〉 be a good k-tuple with X0 = N.
Assume that SeqPk(A,B,R) holds.

Define 〈An〉n∈N as follows: (si , ai ) ∈ An if and only if eXi
(si ) = n.

So the sequence of requests in An will be 〈a0, . . . , ai 〉 precisely if
n ∈ Xi\Xi+1.
Let 〈Bn〉n∈N be the sequence of correct responses by Bob,
guaranteed by SeqPk(A,B,R).Seth Harris On-Line Algorithms and Reverse Mathematics



Appendix: Good Tuples

Proof.

Define 〈Y1, . . . ,Yk−2〉 as follows:

y ∈ Yi if 〈a0, . . . , ai 〉 R 〈b0, . . . , bi 〉y fails but
〈a0, . . . ai ′〉 R 〈b0, . . . bi ′〉y holds for all i ′ < i .

y ∈ Xi−1 \ (Y1 ∪ · · · ∪ Yi ) if 〈a0, . . . , ai ′〉 R 〈b0, . . . , bi ′〉y holds for
all i ′ ≤ i .

⇒ Xi−1 \ (Y1 ∪ · · · ∪ Yi ) is enumerable.

Yi ⊆ Xi since b̄y is a winning response.
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Appendix: Good Tuples

Proof.

By the hypothesis that 〈X0, . . .Xk−1〉 is a good k-tuple, we know
that there exists an element y ∈ Xk−1 \ (Y1 ∪ · · · ∪ Yi ).

So in By , 〈a0, . . . , ak−2〉 R 〈b0, . . . , bk−2〉 holds and in fact
〈a0, . . . , aj〉 R 〈b0 . . . , bj〉 holds for all j ≤ k − 1, contradicting that
(A,B,R ′) is not k-solvable.
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