On-Line Algorithms and Reverse Mathematics

Seth Harris

Drew University

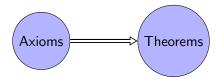
April 30, 2017

Seth Harris On-Line Algorithms and Reverse Mathematics

Reverse Mathematics

Given a theorem, what axioms are necessary to prove the theorem?

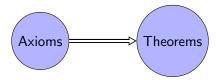
Most mathematical activity:



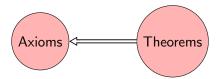
Reverse Mathematics

Given a theorem, what axioms are necessary to prove the theorem?

Most mathematical activity:



Reverse Mathematics:



We work in second order arithmetic.

Two types of variables:

- Number variables x, y, z, w ranging over elements of \mathbb{N}
- Set variables X, Y, Z, W ranging over subsets of \mathbb{N}

From this, can encode:

- Real numbers
- Functions $f : \mathbb{N} \to \mathbb{N}$
- Borel sets
- Graphs, other combinatorial objects

Reverse Mathematics: Important Subsystems

 $\mathsf{ACA}_0 \to \mathsf{WKL}_0 \to \mathsf{RCA}_0$

RCA₀: Recursive Comprehension Axiom.

- Comprehension for Δ_0^0 (computable) sets plus Σ_1^0 -induction.
- Mild assumptions, used as base theory

 WKL_0 : Weak König's Lemma. Every infinite binary tree has an infinite path.

Over RCA_0 , equivalent to:

- Heine-Borel Theorem
- Continuous functions on a closed interval are integrable
- Every locally k-colorable graph is k-colorable

Reverse Mathematics: Important Subsystems

ACA0: Arithmetical Comprehension Axiom

Over RCA_0 , equivalent to:

- Every countable vector space has a basis
- Ramsey's theorem for sets of size ≥ 3
- Existence of a range of arbitrary $f : \mathbb{N} \to \mathbb{N}$
- Existence of Halting set relative to A:

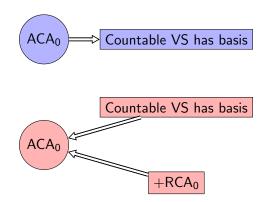
$$A' = \{e : \Phi_e^A(e) \downarrow\}$$

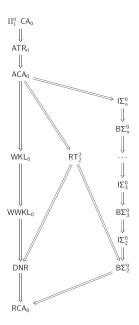
Reverse Mathematics: Important Subsystems

ACA0: Arithmetical Comprehension Axiom

Over RCA_0 , equivalent to:

• Every countable vector space has a basis





Sequential Problems

Problem: Every finite graph without odd cycles is bipartite.

Sequential Problem: For every infinite sequence of finite graphs without odd cycles, there exists an infinite sequence of bipartitions.

Pigeonhole Principle: Given
$$k \ge 2$$
 and $f : A \to k$, with $|A| < \infty$,
there is y such that $|\{x \in A : f(x) = y\}| \ge \frac{|A|}{k}$.

Sequential Pigeonhole Principle: Given $k \ge 2$ and a sequence $\langle A_n, f_n \rangle_{n \in \mathbb{N}}$, $f_n : A_n \to k$ and $|A_n| < \infty$, there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that

$$\forall n \left(|\{x \in A_n : f_n(x) = y_n\}| \geq \frac{|A_n|}{k} \right).$$

Question: Which sequential problems are equivalent to ACA_0, WKL_0, or RCA_0 over RCA_0?

Proposition

The following are equivalent over RCA₀:

- (i) ACA₀
- (ii) Given a sequence $\langle X_n \rangle_{n \in \mathbb{N}}$ of finite sets, there is a sequence of upper bounds $\langle b_n \rangle_{n \in \mathbb{N}}$ such that $\forall n \forall x \ (x \in X_n \to x \leq b_n)$.

Proof: Can compute range of $f : \mathbb{N} \to \mathbb{N}$ $X_n = \{0, s + 1\}$ if $f(s) = n; \quad X_n = \{0\}$ otherwise. Let C be a universal class of graphs (closed under isomorphisms and finite subgraphs) such that every finite graph in C is *r*-colorable.

Sequential Problem: For every sequence of finite graphs $\langle G_n \rangle_{n \in \mathbb{N}}$, $G_n = (V_n, E_n) \in \mathcal{C}$, there exists a sequence of proper *r*-colorings $\langle \chi_n \rangle_{n \in \mathbb{N}}, \chi_n : V_n \to r$.

Let C be a universal class of graphs (closed under isomorphisms and finite subgraphs) such that every finite graph in C is *r*-colorable.

Sequential Problem: For every sequence of finite graphs $\langle G_n \rangle_{n \in \mathbb{N}}$, $G_n = (V_n, E_n) \in \mathcal{C}$, there exists a sequence of proper *r*-colorings $\langle \chi_n \rangle_{n \in \mathbb{N}}, \ \chi_n : V_n \to r$.

Strength of this problem?

Theorem (Gasarch and Hirst)

 $\mathsf{WKL}_0 \leftrightarrow \mathit{Every}\ \mathit{locally}\ \mathit{r-colorable}\ \mathit{graph}\ \mathit{is}\ \mathit{r-colorable}.$

View graph coloring as a game

Alice plays vertex v_i , chooses connections with v_0, \ldots, v_{i-1} .

• If resulting graph not in \mathcal{C} , Alice loses.

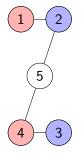
Bob plays color c_i .

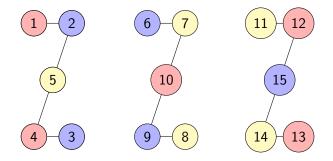
• If resulting coloring is improper, Bob loses.

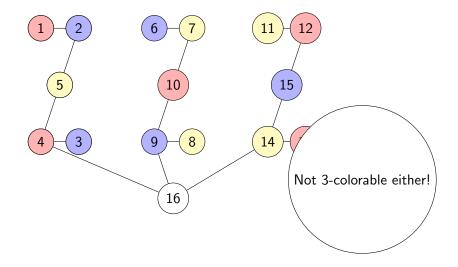
Alice
$$v_0$$
 v_1 v_2 \cdots Bob c_0 c_1 c_2 \cdots

Definition

The class C of graphs is *on-line r-colorable* if Bob has a winning strategy in this game.







Sequential Problems

A problem is a triple (A, B, R) where A and B are trees and $R \subseteq A \otimes B$.

P(A, B, R) is the statement

$$\forall X(\alpha(X) \to \exists Y \beta(X, Y))$$

where:

- $\alpha(X)$ holds if X is a finite set of the form $\{(0, s_0, a_0), \dots, (k - 1, s_{k-1}, a_{k-1})\}$ where $s_0 < \dots < s_{k-1}$ and $\langle a_0, \dots, a_{k-1} \rangle \in A$, and
- $\beta(X, Y)$ holds if Y is a finite set of the form { $(0, t_0, b_0), \ldots, (k - 1, t_{k-1}, b_{k-1})$ } where $t_0 < \cdots < t_{k-1}$ and $\langle a_0, \ldots, a_{k-1} \rangle R \langle b_0, \ldots, b_{k-1} \rangle$ holds.

P(A, B, R) is the statement

$$\forall X(\alpha(X) \to \exists Y \beta(X, Y))$$

SeqP(A, B, R) is the statement

$$\forall X (\forall n \, \alpha(X_n) \, \rightarrow \, \exists Y \, \forall n \, \beta(X_n, Y_n))$$

Here $X = \langle X_n \rangle_{n \in \mathbb{N}}$, $Y = \langle Y_n \rangle_{n \in \mathbb{N}}$.

View problems as games

$$ar{a} = \langle a_0, \dots, a_{k-1}
angle \in A$$
 Questions by Alice
 $ar{b} = \langle b_0, \dots, b_{k-1}
angle \in B$ Responses by Bob

Game G(A, B, R) is played as follows: Alice and Bob alternate:

Alice
$$a_0$$
 a_1 a_2 \cdots Bob b_0 b_1 b_2 \cdots

Alice can stop the game at any time.

Bob is required to respond to every one of Alice's plays.

If k rounds, Bob wins if either
$$\langle a_0, \ldots, a_{k-1} \rangle \notin A$$
 or
 $\langle a_0, \ldots, a_{k-1} \rangle R \langle b_0, \ldots, b_{k-1} \rangle$ holds; otherwise Alice wins.

View problems as games

Game G(A, B, R) is played as follows: Alice and Bob alternate:

Alice
$$a_0$$
 a_1 a_2 \cdots Bob b_0 b_1 b_2 \cdots

(A, B, R) is *solvable* if for every $\bar{a} \in A$ there is a $\bar{b} \in B$ such that $\bar{a} R \bar{b}$ holds.

(A, B, R) is *on-line solvable* if Bob has a winning strategy in G(A, B, R).

(A, B, R) is on-line k-solvable if Bob has a winning strategy in the restricted game $G_k(A, B, R)$ where Alice is required to stop after the k^{th} round (or earlier).

On-Line Algorithms have been useful in studying:

- Graph colorings
- Matching/Marriage problems
- Task scheduling problems
- Paging/server problems
- Competitive auctions

Useful whenever we must make a sequence of choices for a series of inputs *immediately as they arrive*, with no future knowledge.

On-line Task Scheduling

Process tasks of time (1, 1, 1, 3, 3, 3, 6) on 3 processors.

Optimal Solution:

On-Line Solution:

3						
1				6		
1	3			3	3	3
1	3	6		1	1	1

Competitive ratio = $10/6 \approx 1.667$.

On-line Task Scheduling

Process tasks of time (1, 1, 1, 3, 3, 3, 6) on 3 processors.

Optimal Solution:

On-Line Solution:

3					
1			6		
1	3		3	3	3
1	3	6	1	1	1

Competitive ratio = $10/6 \approx 1.667$.

Graham's on-line algorithm: Move to the processor with lightest load. Competitive ratio $2 - \frac{1}{k}$

Albers: Best competitive ratio for an online algorithm is in (1.852, 1.923]

Bounded problems

(A, B, R) is *semi-bounded* if Bob's valid responses are bounded by a function of Alice's previous plays. More precisely, there is a function f such that if $\langle a_0, \ldots, a_{k-1} \rangle R \langle b_0, \ldots, b_{k-1} \rangle$ holds, then

$$b_0 < 2^{f\langle a_0 \rangle}, \ b_1 < 2^{f\langle a_0, a_1 \rangle}, \ \dots, \ b_{k-1} < 2^{f\langle a_0, a_1, \dots, a_{k-1} \rangle}$$

(A, B, R) is *bounded* if, in addition to being semi-bounded, there is a function g such that Alice is required to play $a_i < 2^{g(i)}$ for all *i*.

Proposition (RCA₀)

Let $k \ge 1$ and let (A, B, R) be a bounded problem. Then $G_k(A, B, R)$ is determined.

Proposition (RCA₀)

Let (A, B, R) be a problem which is on-line solvable. Then SeqP(A, B, R) holds.

Proof: Use Bob's winning strategy as a uniformly computable procedure.

Theorem (H.) (RCA₀)

Let $k < \omega$, and let (A, B, R) be a bounded problem which is not on-line k-solvable. Then SeqP_k(A, B, R) implies WKL₀.

DNR: There is a Diagonally Non-Recursive function; For every oracle A, there is $g : \mathbb{N} \to \mathbb{N}$ such that $\forall e (g(e) \neq \Phi_e^A(e))$.

DNR(r): There is such a g with range $\{0, \ldots, r-1\}$.

Theorem

For any $r \geq 2$,

 $\mathsf{DNR}(r) \leftrightarrow \mathsf{WKL}_0 \rightarrow \mathsf{WWKL}_0 \rightarrow \mathsf{DNR} \rightarrow \mathsf{RCA}_0.$

The principle $\operatorname{Predict}_k(r)$

For every oracle A there is a sequence $\langle \Delta_0^A, \dots, \Delta_{k-1}^A \rangle$ of partial $\Sigma_1^{0,A}$ -functions

 $\Delta_i^A: U_{i+1} \to r$

whose domains are a nested sequence of $\Sigma_1^{0,A}$ -sets

$$U_0 = \mathbb{N} \supseteq U_1 \supseteq \ldots \supseteq U_k$$

such that if $\langle f_0, \ldots f_{k-1} \rangle$ is any sequence of partial $\Sigma_1^{0,A}$ -functions

 $f_i: U_i \rightarrow r$

then there is an $x \in U_k$ such that $(\forall i < k) f_i(x) = \Delta_i^A(x)$.

The principle $\operatorname{Predict}_k(r)$

For every oracle A there is a sequence $\langle \Delta_0^A, \dots, \Delta_{k-1}^A \rangle$ of partial $\Sigma_1^{0,A}$ -functions

 $\Delta_i^A: U_{i+1} \to r$

whose domains are a nested sequence of $\Sigma_1^{0,A}$ -sets

$$U_0 = \mathbb{N} \supseteq U_1 \supseteq \ldots \supseteq U_k$$

such that if $\langle f_0, \ldots f_{k-1} \rangle$ is any sequence of partial $\Sigma_1^{0,A}$ -functions

 $f_i: U_i \rightarrow r$

then there is an $x \in U_k$ such that $(\forall i < k) f_i(x) = \Delta_i^A(x)$.

FALSE in the real world. Note that $Predict_1(r) \leftrightarrow \neg DNR(r)$.

The principle $\operatorname{Predict}_k(r)$

Theorem (Schmerl, RCA₀)

• For $r \ge 2, 1 \le k < \omega$, we have $\mathsf{Predict}_k(r) \leftrightarrow \neg \mathsf{WKL}_0$.

The principle $\operatorname{Predict}_k(r)$

Theorem (Schmerl, RCA₀)

- For $r \geq 2, 1 \leq k < \omega$, we have $\mathsf{Predict}_k(r) \leftrightarrow \neg \mathsf{WKL}_0$.
- ¬WKL₀ implies the existence of an infinite non-2-colorable forest with finite components.

(essentially a sequence of finite forests without a corresponding sequence of 2-colorings).

The principle $\operatorname{Predict}_k(r)$

Theorem (Schmerl, RCA₀)

- For $r \ge 2, 1 \le k < \omega$, we have $\mathsf{Predict}_k(r) \leftrightarrow \neg \mathsf{WKL}_0$.
- ¬WKL₀ implies the existence of an infinite non-2-colorable forest with finite components.

(essentially a sequence of finite forests without a corresponding sequence of 2-colorings).

Theorem (Dorais, Hirst, Shafer)

 $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \exists r \mathsf{DNR}(r) \nvDash \mathsf{WKL}_0.$

Conjecture

$\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \exists k (\neg \mathsf{Predict}_k(2)) \nvDash \exists r \mathsf{DNR}(r).$

Let $M_k(A, B, R)$ be one more than the largest possible play from either Alice or Bob in the game $G_k(A, B, R)$. It exists whenever (A, B, R) is bounded.

Theorem (H.) (RCA₀)

Let $k \in \mathbb{N}$. Let (A, B, R) be a bounded problem which is not on-line k-solvable. Let $M = M_k(A, B, R)$. If $\text{Predict}_k(M + 1)$ holds, then $\text{SeqP}_k(A, B, R)$ fails.

Theorem (Schmerl) (RCA₀)

Let $\operatorname{Col}(\mathcal{F}, r)$ be the problem of r-coloring a finite forest. Let $k \in \mathbb{N}$ be such that $\operatorname{Col}(\mathcal{F}, r)$ is not on-line k-solvable. If $\operatorname{Predict}_k(r+1)$ holds, then $\operatorname{SeqCol}_k(\mathcal{F}, r)$ fails.

Proof.

Construct the graph $G_n = (V_n, E_n)$: Put $0 \in V_n$.

If $\Delta_i^A(n)$ converges in exactly *s* steps, then put $s + 1 \in V_n$, and call it v_{i+1} .

By assumption, $\Delta_0^A(n), \ldots, \Delta_i^A(n)$ are defined. If they list a valid *r*-coloring of v_0, \ldots, v_i , then connect v_{i+1} according to Alice's winning strategy. If they do not list a valid *r*-coloring, then do not connect v_{i+1} to any other vertices.

Proof.

Suppose $\langle \chi_n \rangle_{n \in \mathbb{N}}$ is a valid sequence of *r*-colorings of $\langle G_n \rangle_{n \in \mathbb{N}}$. Define $\langle f_i \rangle_{i < k}$ by $f_i(n) = \chi_n(v_i)$ if v_i exists; $f_i(n) \uparrow$ otherwise.

By $\operatorname{Predict}_k(r+1)$, there is some n with $\Delta_i^A(n) = f_i(n) = \chi_n(v_i)$ for all i < k. So χ_n is a valid coloring for all i < k, which Bob can use as a winning play contradicting that Alice has a winning strategy.

Separating WKL_0 from ACA_0

Definition

A problem (A, B, R) has a solvable closed kernel if Bob has a winning play such that every initial segment of that play is also winning.

(Technically, the closed kernel R' is a modification of the relation R).

Example: If a graph coloring problem is solvable, its closed kernel is solvable.

Example: The task scheduling problem we saw was solvable, but its closed kernel was not.

Separating WKL_0 from ACA_0

Example: The Pigeonhole Principle does not have a solvable closed kernel. Consider:

Example: Given a sequence in $3^{<\infty}$, find a value that appears over 1% of the time.

$$(0, 1, \dots, 1, 2, \dots, 2, 0, \dots, 0)$$

 $(10 \times)$ $(100 \times)$ $(1000 \times)$

The closed kernel is not solvable. 0 and 2 are both solutions, but both fail at different initial segments.

Proposition (ACA_0)

Let (A, B, R) be a solvable problem. Then SeqP(A, B, R) holds.

Theorem (H., WKL₀)

Let (A, B, R) be a semi-bounded problem. If the closed kernel (A, B, R') is solvable, then SeqP(A, B, R) holds.

Proof: Dovetail the sequence of requests $\langle n, s, a \rangle$ to get a tree. Solvable closed kernels will ensure that the tree is infinite.

(The tree has height at least $\langle n, 0, 0 \rangle$: if n' < n, then part of the request $X_{n'}$ will be enumerated by that node, and at least one partial solution will extend to a full solution.)

An infinite branch of the tree will encode a sequence of solutions.

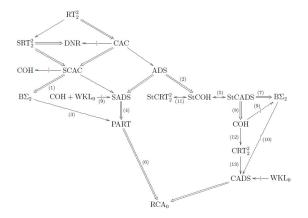
Theorem (Dorais, H., RCA₀)

- Let k < ω. If (A, B, R) has a closed kernel that is not k-solvable and SeqP_k(A, B, R) holds, then ACA₀ holds.
- (2) If $I\Sigma_2^0$ holds, then (1) holds for nonstandard $k \in \mathbb{N}$.

Uses concept called "Good-For-Uniform k-Tuple"

Generalizes Schmerl's "Good Tuple."

Thank you! - The Reverse Math Zoo



References

S. Albers, *Better bounds for on-line scheduling*. SIAM J. Computing 29(2), 459-473.

F. Dorais, *Classical consequences of continuous choice principles from intuitionistic analysis.* Notre Dame J. Formal Logic 55 (2014), 25-39.

F. Dorais and S. Harris, *Evasion, prediction, and on-line algorithms*. In preparation.

F. Dorais, J. Hirst, and P. Shafer, Comparing the strength of diagonally non-recursive functions in the absence of Σ_2^0 -induction. Submitted.

W. Gasarch and J. Hirst, *Reverse mathematics and recursive graph theory*, Mathematical Logic Quarterly 44 (1998), 465–473.

R. Graham, *Bounds on multiprocessing timing anomalies*. SIAM J. Applied Math 17 (2), 416-429.

References

J. Hirst and C. Mummert, *Reverse mathematics and uniformity in proofs without excluded middle*. Notre Dame J. Formal Logic 52 (2011), no. 2, 149-162.

R. Karp, *On-line algorithms versus off-line algorithms: How much is it worth to know the future?*. Proceedings World Computer Congress, 1992.

J. Schmerl, *Graph coloring and reverse mathematics*. Mathematical Logic Quarterly 46 (2000), no. 4, 543-548.

J. Schmerl, *Reverse mathematics and graph coloring: Eliminating diagonalization*. Reverse Mathematics 2001, vol. 21 of Lecture Notes in Logic (2005), 331-48.

J. Schmerl, *Reverse mathematics and Grundy colorings of graphs*. Mathematical Logic Quarterly 2010, vol. 56, 541-48.

S. Simpson, *Subsystems of second order arithmetic*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999.

Seth Harris On-Line Algorithms and Reverse Mathematics

Our proof is based on Schmerl's concept of "Good Tuples."

Let $n \geq 2$. The *n*-tuple $\langle X_0, X_1, \ldots, X_{n-1} \rangle$ is *good* if $X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq X_{n-1}$, each X_i is enumerable, and whenever $Y_1, Y_2, \ldots, Y_{n-2}$ are disjoint enumerable sets such that $Y_i \subseteq X_i, 1 \leq i \leq n$, and $X_{i-1} \setminus (Y_1 \cup \cdots \cup Y_i)$ is enumerable, $1 \leq i \leq n$, then $X_{n-1} \setminus (Y_1 \cup \cdots Y_n) \neq \emptyset$. Our proof is based on Schmerl's concept of "Good Tuples."

Let $n \geq 2$. The *n*-tuple $\langle X_0, X_1, \ldots, X_{n-1} \rangle$ is *good* if $X_0 \supseteq X_1 \supseteq X_2 \supseteq \cdots \supseteq X_{n-1}$, each X_i is enumerable, and whenever $Y_1, Y_2, \ldots, Y_{n-2}$ are disjoint enumerable sets such that $Y_i \subseteq X_i, 1 \leq i \leq n$, and $X_{i-1} \setminus (Y_1 \cup \cdots \cup Y_i)$ is enumerable, $1 \leq i \leq n$, then $X_{n-1} \setminus (Y_1 \cup \cdots Y_n) \neq \emptyset$.

DO NOT EXIST in models of ACA₀. (Take $Y_1 = X_1$, $Y_2 = \cdots = Y_{n-2} = \emptyset$)

Lemma (Schmerl)

Let $(\mathcal{N}, \mathbb{N})$ be a model, $n < \omega$. Then $\mathcal{N} \vdash ACA_0$ holds if and only if $\mathcal{N} \vdash$ there are no uniformly good n-tuples.

Lemma (H., RCA₀)

 Let n < ω. Then ACA₀ holds if and only if there are no uniformly good n-tuples.

(2) If $I\Sigma_2^0$ holds, then (1) holds for nonstandard $n \in \mathbb{N}$.

Appendix: Good Tuples

Theorem (Dorais, H., RCA₀)

Let $k \in \mathbb{N}$, and let (A, B, R) be a problem. If the closed kernel (A, B, R') is not k-solvable and there is a good k-tuple, then SeqP_k(A, B, R) fails.

Proof.

Let $\langle a_0, \ldots, a_{k-1} \rangle$ be a request from Alice such that for any winning response $\langle b_0, \ldots, b_{k-1} \rangle$ (meaning that $\bar{a} \ R \ \bar{b}$), there exists j < k such that $\langle a_0, \ldots, a_{j-1} \rangle \ R \ \langle b_0, \ldots, b_{j-1} \rangle$ fails. Let $\langle X_0, \ldots, X_{k-1} \rangle$ be a good *k*-tuple with $X_0 = \mathbb{N}$. Assume that SeqP_k(A, B, R) holds.

Define $\langle A_n \rangle_{n \in \mathbb{N}}$ as follows: $(s_i, a_i) \in A_n$ if and only if $e_{X_i}(s_i) = n$. So the sequence of requests in A_n will be $\langle a_0, \ldots, a_i \rangle$ precisely if $n \in X_i \setminus X_{i+1}$. Let $\langle B_n \rangle_{n \in \mathbb{N}}$ be the sequence of correct responses by Bob,

Seth Harris

Proof.

Define $\langle Y_1, \ldots, Y_{k-2} \rangle$ as follows:

 $y \in Y_i$ if $\langle a_0, \ldots, a_i \rangle R \langle b_0, \ldots, b_i \rangle_y$ fails but $\langle a_0, \ldots a_{i'} \rangle R \langle b_0, \ldots b_{i'} \rangle_y$ holds for all i' < i.

 $y \in X_{i-1} \setminus (Y_1 \cup \cdots \cup Y_i)$ if $\langle a_0, \ldots, a_{i'} \rangle R \langle b_0, \ldots, b_{i'} \rangle_y$ holds for all $i' \leq i$.

 $\Rightarrow X_{i-1} \setminus (Y_1 \cup \cdots \cup Y_i)$ is enumerable.

 $Y_i \subseteq X_i$ since \bar{b}_y is a winning response.

Proof.

By the hypothesis that $\langle X_0, \ldots X_{k-1} \rangle$ is a good *k*-tuple, we know that there exists an element $y \in X_{k-1} \setminus (Y_1 \cup \cdots \cup Y_i)$.

So in B_y , $\langle a_0, \ldots, a_{k-2} \rangle R \langle b_0, \ldots, b_{k-2} \rangle$ holds and in fact $\langle a_0, \ldots, a_j \rangle R \langle b_0, \ldots, b_j \rangle$ holds for all $j \leq k-1$, contradicting that (A, B, R') is not k-solvable.